Parallel Programming Support for Applications with Unstructured Meshes
Expectations for "Local View" of XcalableMP

Kengo NAKAJIMA
Information Technology Center
The University of Tokyo

International Workshop on Peta-Scale Computing Programming Environment,
Languages and Tools (WPSE 2009), March 25-26 2009, Tsukuba, Japan

First of All

• MY background
 – Computational Mechanics, Computational Fluid Dynamics
 • FEM, FDM, FVM, BEM …
 – Iterative Linear Solvers, Parallel Preconditioning Methods
 – Parallel Programming Models

• I am a member of “XcalableMP” team, but
 – pro-MPI
 – or pro-Hybrid (MPI+OpenMP)
Introduction
 • 3-min Introduction to Finite Element Method
Parallel Finite-Element Methods
 • GeoFEM
 • Various Capabilities
Critical Problems in Parallel FEM’s
 • Expectations to XcalableMP

Two Types of Applications

- Local
 - FEM, FDM, FVM
 - Local Operation
 - Comm. with Neighbors
 - Sparse Matrix
 - Memory/Latency-Bound

- Global
 - BEM, BIM, MD, Spectral
 - Global Operation
 - All-to-All Communications
 - Dense Matrix
 - Communication (BW)-Bound
• Global View
 – “Global” applications
 • Generally, structured data
 – “Local” applications with Structured Grids (e.g. FDM)

• Local View
 – “Local” applications with Unstructured Meshes (e.g. FEM)
 • Suitable for Complicated Geometries, Flexible
 – Pure SPMD style

FDM with AMR (Adaptive Mesh Refinement): Unstructured
• Global View
 – Regular Grid

  ```
do k = 1, KMAX
  do j = 1, JMAX
    do i = 1, IMAX
      Y(i, j, k) = ...
    enddo
  enddo
  enddo
  ```

• Local View
 – Irregular Mesh

  ```
do i = 1, N
  Y(i) = ...
  enddo
  ```
Finite-Element Method (FEM)

- One of the most popular numerical methods for solving PDE’s.
 - elements (meshes) & nodes (vertices)
- Consider the following 2D heat transfer problem:
 \[\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + Q = 0 \]
 - 16 nodes, 9 bi-linear elements
 - uniform thermal conductivity (\(\lambda = 1 \))
 - uniform volume heat flux (Q=1)
 - \(T=0 \) at node 1
 - Insulated boundaries

Galerkin FEM procedures

- Apply Galerkin procedures to each element:
 \[\int_V [N]^T \left\{ \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + Q \right\} dV = 0 \]
 where \(T = [N]\{\phi\} \) in each elem.
 \{\phi\} : \(T \) at each vertex
 \([N]\) : Shape function (Interpolation function)
- Introduce the following “weak form” of original PDE using Green’s theorem:
 \[- \int_V \lambda \left(\frac{\partial [N]^T}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^T}{\partial y} \frac{\partial [N]}{\partial y} \right) dV \cdot \{\phi\} + \int_V Q[N]^T dV = 0 \]
Element Matrix

- Apply the integration to each element and form “element” matrix.

\[
- \int_V \lambda \left(\frac{\partial [N]^T}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^T}{\partial y} \frac{\partial [N]}{\partial y} \right) dV \cdot \{\phi\}
\]

\[
+ \int_V Q[N]^T dV = 0
\]

\[
[k^{(e)}] \{\phi^{(e)}\} = \{f^{(e)}\}
\]

Global (Overall) Matrix

Accumulate each element matrix to “global” matrix.

\[
[K]{\Phi} = \{F\}
\]
To each node ...
Effect of surrounding elem’s/nodes are accumulated.

\[
[K] \{\Phi\} = \{F\}
\]

Solve the obtained global/overall equations
under certain boundary conditions (\(\Phi_1=0\) in this case)
Features of FEM Applications (1/2)

- Local Operations, Element-by-Element
 - Coefficient Matrix: Sparse
 - Good Feature for Parallel Operations
- Irregular Sparse Matrices
 - Indirect Access
 - Memory-Bound

```fortran
  do i = 1, N
    jS = index(i-1)+1
    jE = index(i)
    do j = jS, jE
      in  = item(j)
      Y(i) = Y(i) + AMAT(j)*X(in)
    enddo
  enddo
```
Features of FEM Applications (1/2)

- Parallel FEM with Domain Decomposition
 - Communications with ONLY Neighbors
 - Small Amount of Communications
 - Latency-Bound

Introduction

- 3-min Introduction to Finite Element Method
- Parallel Finite-Element Methods
 - GeoFEM
 - Various Capabilities
- Critical Problems in Parallel FEM's
GeoFEM: FY.1998-2002
http://geofem.tokyo.rist.or.jp/

• Parallel FEM platform for solid earth simulation.
 – parallel I/O, parallel linear solvers, parallel visualization
 – solid earth: earthquake, plate deformation, mantle/core convection, etc.

• Part of national project by STA/MEXT for large-scale earth science simulations using the Earth Simulator.

• Strong collaborations between computer/computational science and natural science (solid earth) communities.

• Started from development of a parallel FEM application for solid mechanics
 – Common capabilities have been extracted for “platform”

Earth Simulator (ES)
http://www.es.jamstec.go.jp/

• 640 × 8 = 5,120 Vector Processors
 – SMP Cluster-Type Architecture
 – 8 GFLOPS/PE
 – 64 GFLOPS/Node
 – 40 TFLOPS/ES

• 16 GB Memory/Node, 10 TB/ES

• 640 × 640 Crossbar Network
 – 12.3 GB/sec × 2

• Memory BWTH with 32 GB/sec.

• 35.6 TFLOPS for LINPACK (2002-March)
 – 14th in Nov.06 list (Jun.07 list this week)

• 26 TFLOPS for AFES (Climate Simulation)
System Configuration of GeoFEM, FEM: Modularity

Utilities
One-domain mesh

Pluggable Analysis Modules
Structure
Fluid
Wave

Platform
Comm.
Solver
Vis.
I/F
I/F
I/F

Partitioner
Equation solvers
Visualizer

Parallel I/O

GPPView

Visualization data

Partitioned mesh

Results on Solid Earth Simulation

Magnetic Field of the Earth: MHD code

Complicated Plate Model around Japan Islands

Simulation of Earthquake Generation Cycle in Southwestern Japan

Transportation by Groundwater Flow through Heterogeneous Porous Media

TSUNAMI!!
Goal of GeoFEM (Fall 1997)
as Environment for Development of Parallel
FEM Applications

- NO MPI call’s in user’s code !!!!!
- As serial as possible !!!!!
 - Original FEM code developed for single CPU machine can
 work on parallel computers with smallest modification.

- Careful design of the local data structure for distributed parallel computing is (was) very important
 - This was the most critical part for the “success” of GeoFEM

Six reasons why HPF failed
Brad Chamberlain (Cray/Chapel)

- Lack of good performance soon enough, lack of patience from the use community
- Lack of portable performance model, execution model
- Inability to drop the lower levels of parallel computation
- Lack of rich abstraction
 – reasonable support for dense multidimensional arrays
 – but not for sparse data structures
- Lack of general parallel programming models
- Lack of an open source implementation

H.Murai (NEC/XcalableMP)
Parallel Computing in GeoFEM
Algorithms: Parallel Iterative Solvers & Local Data Structure

- Parallel Iterative Solvers by (Fortran90+MPI)
 - Iterative method is the only choice for large-scale problems with parallel processing.
 - Portability is important -> from PC clusters to Earth Simulator

- Appropriate Local Data Structure for (FEM+Parallel Iterative Method)
 - FEM is based on local operations.

Parallel Computing in FEM
SPMD: Single-Program Multiple-Data
Large Scale Data -> partitioned into Distributed Local Data Sets.

FEM code on each PE assembles coefficient matrix for each local data set: this part is completely local, same as serial operations

Global Operations & Communications happen only in Linear Solvers
- dot products, matrix-vector multiply, preconditioning
Parallel Computing in GeoFEM

- Finally, users can develop parallel FEM codes easily using GeoFEM without considering parallel operations.
 - Local data structure and linear solvers do it.
 - Basically, same procedures as those of serial operations.
 - This is possible because FEM is based on local operations. FEM is really suitable for parallel computing.

- **NO MPI in user's code**
- **Plug-in**

Node-based Partitioning

internal nodes - elements - external nodes
Node-based Partitioning

internal nodes - elements - external nodes

- Partitioned nodes themselves (Internal Nodes)
- Elements which include Internal Nodes
- **External Nodes** included in the Elements in overlapped region among partitions.
- Info of External Nodes are required for completely local element–based operations on each processor.

What is Communication?

- Getting Information for EXTERNAL NODES from EXTERNAL PARTITIONS.

- “Communication tables” in local data structure includes the procedures for communication.
How to “Parallelize” Iterative Solvers?

e.g. CG method (with no preconditioning)

- Parallel procedures are required in:
 - Dot products
 - Matrix-vector multiplication

Compute \(r^{(0)} = b - [A]x^{(0)} \)

\[
\text{for } i = 1, 2, \ldots \\
\quad z^{(i-1)} = r^{(i-1)} \\
\quad \rho_{i-1} = r^{(i-1)} z^{(i-1)} \\
\quad \text{if } i=1 \\
\quad \quad p^{(1)} = z^{(0)} \\
\quad \text{else} \\
\quad \quad \beta_{i-1} = \rho_{i-1}/\rho_{i-2} \\
\quad \quad p^{(i)} = z^{(i-1)} + \beta_{i-1} p^{(1)} \\
\quad \text{endif} \\
\quad q^{(i)} = [A]p^{(i)} \\
\quad \alpha_i = \rho_{i-1}/p^{(1)} q^{(i)} \\
\quad x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \\
\quad r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)} \\
\quad \text{check convergence } |r| \\
\text{end}
\]

How to “Parallelize” Dot Products

- use MPI_ALLreduce after local operations

\[
\text{RHO} = 0.0 \\
\text{do } i= 1, N \\
\quad \text{RHO} = \text{RHO} + W(i,R) * W(i,Z) \\
\text{enddo} \\
\text{Allreduce RHO}
\]
How to “Parallelize” Matrix-Vec. Multiplication

- We need values of \(\{p\} \) vector at **EXTERNAL** nodes **BEFORE** computation !!

```plaintext
get \{p\} at EXTERNAL nodes

do i = 1, N
    q(i) = D(i) * p(i)
    do k = INDEX_L(i-1)+1, INDEX_U(i)
        q(i) = q(i) + AMAT_L(k)*p(ITEM_L(k))
    enddo
    do k = INDEX_U(i-1)+1, INDEX_U(i)
        q(i) = q(i) + AMAT_U(k)*p(ITEM_U(k))
    enddo
endo
```

SEND, RECV via Comm. Table
Domain-to-Domain Communication
Exchange Boundary Information (SEND/RECV)

3D Elastic Model (Large Case)
256x128x128/SMP node, up to 2,214,592,512 DOF

GFLOPS rate

Parallel Work Ratio

3.8TFLOPS for 2.2G DOF
176 nodes (33.8% of peak)
HPC-MW (FY.2002-FY.2007)
Successor of GeoFEM

- Parallel I/O : I/F for NASTRAN, ABAQUS etc.
- Adaptive Mesh Refinement (AMR)
- Dynamic Load-Balancing using pMETIS (DLB)
- Parallel Visualization
- Linear Solvers
- FEM Operations (Matrix Assembling etc.)
- Coupling I/F
- Utility for Mesh Partitioning

AMR for Solid Mechanics
Simulation of Bone

Initial Mesh Mises Stress Adapted Mesh
An Example of Coupled Simulation

• Coupling between “Ground Motion” and “Tanks for Oil-Storage”
 – “One-way” coupling from “Ground Motion” to “Tanks”.
 – Displacement of ground surface is given as forced displacement of bottom surface of tanks.
• Ground Motion: FORTRAN, Tanks: C

“Centralized” or “Distributed” in Coupled Simulations
M ∩ N Parallel Data Redistribution

- The transfer of data from a parallel program running on M processors to another parallel program running on N processors.
 - Ideally neither program knows the number of processes on the other one.

16 Tanks, 16 Domains
• Introduction
 • 3-min Introduction to Finite Element Method
• Parallel Finite-Element Methods
 • GeoFEM
 • Various Capabilities
• Critical Problems in Parallel FEM’s
 • Expectations to XcalableMP

Current Status (1/2)

• Almost everything can be done with MPI-based utilities, tools, libraries, and frameworks (open source, commercial)
 – GeoFEM, HPC-MW, PETSc, AZTEC
 – ZOLTAN (SNL) for AMR/DLB
 – MCT (Model Coupling Toolkit, ANL) etc.
 – Parallel Version of AVS
• It is said that programming with MPI is difficult and complicated for application people…
 – Experiences in education at earth science department of UT.
 – “Data Structure = Abstraction” is important
• Development of everything (tools, libraries, applications) is definitely difficult
Current Status (2/2)

- It is said that programming with OpenMP is easy and straightforward for application people...
 - Reordering for ILU factorization
 - Data Localization and NUMA control issues for Multi-Socket/Multi-Core Architecture (e.g. T2K Open Supercomputers)

Elements in each color are independent, therefore parallel processing is possible. => divided into OpenMP threads (8 threads in this case)

Because all arrays are numbered according to “color”, discontinuous memory access may happen on each thread.

Lessons from GeoFEM

- Tools/Libraries extracted from “real” applications are practically useful.
- Careful design of local data structure for SPMD is important.

- I am not sure whether programming language can be designed in this way or not.
 - but several types of target application should be considered.
“Local View” in XcalableMP

- Users must understand SPMD, local/global data
- Fundamental idea is not so different from MPI version
- Programming is easier
 - !$XMP reflect XXX
 - !$XMP sum XXX

Sparse Matrix-Vector Products
Six reasons why HPF failed

Brad Chamberlain (Cray/Chapel)

- Lack of good performance soon enough, lack of patience from the use community
- Lack of portable performance model, execution model
- Inability to drop the lower levels of parallel computation
- **Lack of rich abstraction**
 - reasonable support for dense multidimensional arrays
 - but not for sparse data structures
- Lack of general parallel programming models
- Lack of an open source implementation

H.Murai (NEC/XcalableMP)
Important Issues for **XcalableMP** (1/2)

- **Examples of REAL Applications**
 - XcalableMP should support functions required by real appl’s
- **Util’s/Tools/Libraries/Frameworks for Development of Various Types of Applications**
 - Linear Solvers, Visualization, Coupling
 - Meshing, Partitioning, AMR/DLB
- **Performance (Parallel, Serial), memory, latency**
- **Combination with MPI**
 - explicit use of MPI
 - utilization a lot of existing MPI-based frameworks, libraries
- **Combination with OpenMP**
 - XcalableMP + OpenMP
- **Multi-Level XcalableMP**

Important Issues for **XcalableMP** (2/2)

- **Simple Interface between FORTRAN & C**
 - Example of Coupled Simulations
- **Global Information**
- **Education**
 - Idea of SPMD
 - especially in “Local View”
 - Development of Applications
 - course for each application
 - text book
 - NOT just for syntax
MY Expectations for \textit{XcalableMP}

- as an Environment for Development of Parallel Tools by NON-Experts
 - Application people can develop tools for parallel computing (e.g. AMR, DLB, coupling etc.) without help of experts using XcalableMP.
 - XcalableMP can provide “global” information under distributed environment
 - by CFA-features, GA-like capabilities
 - NOT optimized, but easy
 - e.g. AMR/DLB for very special types of elements which are not supported by general libraries
 - This type of procedure is used not so frequently during computation (e.g. once for 1,000 time steps), therefore it is not required to be optimized
 - Experts of tool development can develop optimized version later

\textbf{AMR+DLB}

8 PE cases with 2-level adapted meshes
Final Mesh : 10,240 nodes, 69,462 tet.

\cite{Nakajima, Fingberg and Okuda, 2001}
Example of “non-scalable” processes in “NEW Local ID” for DLB

```fortran
do ip = 1, PETOT
    if (ip-1.eq.my_rank) then
        do i = 1, NODEtotLorg
            nn = NODE_ID_NEW(i,2)
            gcount(nn+1) = gcount(nn+1) + 1
            NODE_ID_NEW(i,1) = gcount(nn+1)
        enddo
    endif
    call MPI_BCAST ( gcount, PETOT, MPI_INTEGER, ip-1, &
                    MPI_COMM_WORLD, ierr )
enddo
```

Critical Issues for Parallel FEM (1/2)

- Robust and Scalable Linear Solvers for Real-World Ill-Conditioned Problems
Technical Issues of “Parallel” Preconditioners for Iterative Solvers

- If domain boundaries are on “stronger” elements, convergence is very bad.

3D Solid Mechanics
E: Young’s Modulus

Extension of Overlapped Zones

Cost for computation and communication may increase
Heterogeneous Field with Distorted Meshes

Results: 64 cores
Distorted Meshes
\(\text{BILU}(p, \theta)-(d, \alpha) \)
3,090,903 DOF, 64 cores
MAX distortion: 150-deg.
Results: 64 cores Distorted Meshes
BILU(p,θ)-(d,α)
3,090,903 DOF, 64 cores
MAX distortion: 225-deg.

Automatic Tool for Optimum Depth of Overlapping

• Strategy for Optimum Depth
 – interesting research area

• Tools for “Just Moving Data” on Distributed Environment
 – NOT easy
 – Utilization of DLB tool is possible, but difficult for non-experts
 – XcalableMP
Critical Issues for Parallel FEM (2/2)

- Exascale Systems
 - $O(10^8)$ cores
 - Terrible Communication Overhead by MPI Latency for $>10^8$-way MPI’s
- Expectations for Hybrid
 - 1/16 MPI processes for T2K/Tokyo

Flat MPI vs. Hybrid

Flat-MPI Each PE -> Independent

Hybrid Hierarchal Structure
Weak Scaling Results on ES GeoFEM Benchmarks [KN 2003]

• Generally speaking, hybrid is better for large number of nodes
• especially for small problem size per node
 – “less” memory bound

![Graph showing weak scaling results with points for Flat MPI and Hybrid configurations for Large and Small scales.]

Target Application

• 3D Elastic Problems with Heterogeneous Material Property
 – $E_{\min} = 10^3$, $E_{\min} = 10^{-3}$, $\nu = 0.25$
 • generated by “sequential Gauss” algorithm for geo-statistics [Deutsch & Journel, 1998]
 – 128^3 tri-linear hexahedral elements, 6,291,456 DOF
• Strong Scaling
• (SGS+CG) Iterative Solvers
 – Symmetric Gauss-Seidel
 – HID-based domain decomposition
• T2K/Tokyo
 – 512 cores (32 nodes)
• FORTARN90 (Hitachi) + MPI
 – Flat MPI, Hybrid (4x4, 8x2, 16x1)
Flat MPI, Hybrid (4x4, 8x2, 16x1)

<table>
<thead>
<tr>
<th></th>
<th>Flat MPI</th>
<th>Hybrid 4x4</th>
<th>Hybrid 8x2</th>
<th>Hybrid 16x1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Improvement: CASE-1 \(\sqsubset\) CASE-3

Normalized by the Best Performance of Flat MPI

- **CASE-1:** NUMA control
- **CASE-2:** + F.T.
- **CASE-3:** + Further Reordering

32 nodes, 512 cores

196,608 DOF/node
Relative Performance for Strong Scaling (Best Cases)
32~512 cores
Normalized by BEST Flat MPI at each core#

Optimum Parallel Programming Model?

- Flat
 - MPI
 - XcalableMP

- Hybrid
 - MPI (inter-node) + OpenMP (intra-node)
 - MPI + MPI
 - XcalableMP + OpenMP
 - XcalableMP + XcalableMP
 - XcalableMP + MPI